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Field-scale modeling of hydraulic fracture development in formations containing pre-
existing fractures is a time-consuming task for XFEM-based numerical models. Because
the costly solving of large-scale linear equation systems has to be performed for many
times during two types of iteration processes of solving the fluid-solid coupling equations
and determining the contact status between frictional fracture surfaces. In view of this
challenge, a reduction technique is proposed in a tightly coupled model in which the equi-
librium and flow continuity equations are solved simultaneously by the Newton-Raphson
method. By retaining the enriched degrees of freedom (DOFs) and removing the standard
DOFs which have no contribution to fracture opening, the dimensions of linear equation
systems to be solved for both the fluid-solid coupling iteration and the nonlinear contact
iteration can be significantly reduced. In the coupled model, the continuity of pressure
and the mass balance at intersections of hydro-fractures are automatically achieved by
sharing a common fluid node. The contact behavior of frictional fractures is modeled using
the penalty method within the framework of plasticity theory of friction. Moreover, the
extended Renshaw and Pollard criterion is utilized to predict whether a hydro-fracture will
propagate across the frictional fracture. Simulation results indicate that the reduction tech-
nique can significantly accelerate the simulation without worsening the convergence or
losing the computational accuracy for both types of iterations, and the acceleration effect
becomes more remarkable as the problem scale increases. The great advantages of XFEM as
well as the computational efficiency make the proposed method an attractive tool for engi-
neering design of hydraulic fracturing treatments.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Hydraulic fracturing has been used in a wide range of engineering areas. As an effective stimulation strategy, it is widely
applied to enhance production of conventional and unconventional oil and gas reservoirs [1]. Other applications include
underground disposal of toxic wastes [2], stimulation of geothermal reservoir [3] and secure storage of CO2 [4]. A typical
hydraulic fracturing process involves using a high-pressure fluid to pressurize the wellbore until fractures emerge, which
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Nomenclature

a vector of enriched DOF associated with Heaviside function
b vector of enriched DOF associated with tip enrichment function
B matrix of shape function derivatives
c vector of enriched DOF associated with junction enrichment function
D elastic tensor
Dcont contact tangent operator
E elastic modulus
Fl tip enrichment functions
F, Fext force vectors
Fs, Fe force vectors extracted from F
H Heaviside function
H global flux stiffness of fluid elements
J, JR Jacobian matrix of Newton-Raphson iteration
J junction enrichment function
k permeability of fracture
kN, kT penalty parameters
KI, KII mode-I and mode-II stress intensity factors
Ke equivalent stress intensity factor
KIC fracture toughness
Km dimensionless fracture toughness
K global stiffness matrix
Kss, Kse, Kes, Kee sub-matrices extracted from K
n, nC outwards normal vectors
N standard finite element shape function
Np shape function of fluid element
Np; Nu; Nw matrices of shape functions
p fluid pressure
P fluid pressure vector
q fluid flux
Qinj injection rate of fluid
Q matrix transferring fluid pressure into equivalent nodal forces
R, RR residual vectors of Newton-Raphson iteration
s coordinate system along hydraulic fracture
stip location of fracture tip
S sets of nodes
S source term in coupled equations
t, Dt time and time increment
t, tcont traction vectors
U, Us, Ue global nodal displacement
w fracture width
w fracture width vector
a fracture propagation angle in the local fracture tip coordinate system
r stress tensor
e strain tensor
ewtol; e

p
tol; e

c
tol convergence tolerances

gp, gw, gc convergence factors
m Poisson’s ratio
l fluid viscosity
lf coulomb friction coefficient
X two dimensional domain
C, CFF, CHF, Ct, Cu boundaries
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is followed by continuous injection of a large amount of fluid into emerged fractures to drive them to extend farther into the
formation. In oil and gas fields, microseismic monitoring and other techniques have shown that pre-existing natural frac-
tures in the formation further complicate the hydraulic fracture, forming complex fracture network [5–7]. In addition, the
short- and long-term production of the reservoir is directly related to the complexity of the created fracture network which
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is heavily influenced by the pre-existing natural fractures. Thus, being able to correctly predict complex hydraulic fracture
development process during fracturing treatments is of great value for the stimulation design and productivity evaluation of
reservoirs.

It is commonly known that theoretically clarifying the mechanism of hydraulic fracturing is particularly difficult even
under considerable assumptions. From the point of view of numerical simulation, modeling of hydraulic fracturing in nat-
urally fractured formation is also a challenging task due to a variety of physical processes involved in the problem, such
as fluid flow within fractures, mechanical deformation of fractures induced by fluid pressure, propagation of fractures, inter-
action of hydraulic fractures and natural fractures and frictional slip along frictional natural fractures. In the last few decades,
due to the efforts of many scholars, a number of numerical methods have been adopted to simulate the hydraulic fracturing
process, among which the most widely used are the displacement discontinuity method (DDM) [5,8–14], the distinct ele-
ment method (DEM) [15–17], the finite element method (FEM) [18–22], and the extended finite element method (XFEM)
[23–31]. The DDM is developed on the basis of the boundary element method [32] and is quite suitable for modeling frac-
tures. In the DEM, the rock mass is treated as a combination of discrete blocks connected by fractures or faults, and in con-
sequence, the propagation paths of fractures are restricted to the edges of discrete blocks. On the other hand, the
computational cost of DEM is extremely expensive when a large number of blocks are involved [33]. The FEM is a flexible,
effective and widely used numerical method. However, simulation of a large number of fractures in reservoirs using FEM is
very time-consuming due to the remeshing as fractures propagate. What’s more, in some cases when remeshing, results
need to be projected from the old mesh to the new one, which further increases the computational cost [34]. In view of these
shortcomings of FEM, some improvement methods have been proposed, among which the most effective one is the XFEM.

In the XFEM, no remeshing is required during fracture propagation, and the discontinuity is modeled by introducing addi-
tional enriched degrees of freedom (DOFs) to the nodes whose support domains are cut by fractures [35–39]. This method
shows great potential for modeling hydraulic fracturing due to its characteristic of mesh-independence and the convenience
of handling intersections between hydro-fractures and natural fractures by introducing the junction enrichment function
[26,40]. In recent years, attracted by the great advantages of XFEM, some researchers have used it to model hydraulic frac-
turing and fluid flow in porous media. Lecampion [23] proposed a model to investigate the solution of hydraulic fracturing
problem in different propagation regimes (viscosity-dominated and toughness-dominated regimes) in non-porous forma-
tion. Dahi-Taleghani and Olson [7] used XFEM to simulate hydraulic fracture growth accounting for the effect of the natural
fracture. Mohammadnejad and Khoei [24] developed a fully coupled XFEM model to simulate the hydraulically driven frac-
ture propagation in porous media. They also [41] developed an XFEM-based model to simulate the flow of wetting and non-
wetting pore fluids in progressively fracturing, partially saturated porous media. Then, Khoei et al. [42] further extended
their work by employing and comparing two alternative algorithms to compute the interfacial forces due to fluid pressure
exerted on the fracture faces based on a ‘partitioned solution algorithm’ and a ‘time-dependent constant pressure algorithm’.
In addition, Gordeliy and Peirce [25] proposed two different schemes for fracture with fluid lag and fracture with singular tip
pressure. Dahi-Taleghani and Olson [30] studied the influence of cemented natural fractures on the hydro-fracture geometry
using XFEM, but their model assumes constant pressure distribution within the fracture network. Shi et al. [31] proposed a
coupled XFEM-based model for modeling hydraulic fracturing in consideration of proppant. Khoei et al. [26,29] utilized the
XFEM to investigate the interaction between the hydro-fracture and the frictional natural fracture in impermeable media.
Recently, Khoei et al. [43] proposed a numerical model of two-phase fluid flow in deformable porous media containing frac-
tures with multiple length scales using XFEM and an equivalent continuum model.

Due to its significant influence on the flow of oil or gas, many numerical studies in the literature focus on the formation
mechanisms of fracture network during fracturing treatments. Weng [5] presented a broad and detailed overview of existing
numerical models of hydraulic fracturing designed to simulate complex fractures in naturally fractured formation. However,
in the published literature, the XFEM-based model has not yet been specifically applied to large-scale simulations of hydrau-
lic fracturing considering non-constant fluid pressure in reservoirs containing frictional natural fractures. One key issue that
limits the application of XFEM to this kind of simulations is the high computational cost induced by the iteration required to
solve the fluid-solid coupling (named as FSC for short) equations and the iteration required to determine the contact status
between frictional fracture surfaces [26,29]. Generally, the fluid pressure distribution should be iteratively calculated by the
fixed-point iteration or the Newton-Raphson iteration [44]. Besides, as the contact conditions between fractures faces are
correlated to the distribution of fluid pressure inside fractures, it is necessary to detect and update contact conditions during
the FSC iteration by performing the contact iteration. During each iteration (no matter the FSC iteration or the contact iter-
ation), the dimensionality of the coupled equations to be solved is directly related to the sum of standard DOFs and addi-
tional enriched DOFs, and is usually very large for a reservoir-scale simulation. More importantly, the required CPU time
to solve a linear system of equations increases rapidly as its dimensionality increases. In practice, solving a system of linear
equations has a complexity of O (n3) at most, and at least n2 operations are required to solve a system of n linear equations
[45]. Therefore, the total computational cost may be considerably high for a typical reservoir-scale simulation where mul-
tiple iterations are required to be performed before achieving acceptable results. In view of the challenge outlined above, the
purpose of this paper is to improve the computational efficiency in the XFEM modeling of the hydraulic processes involving
frictional fractures. The reduction technique was first developed by Guyan [46] to reduce the size of the stiffness and mass
matrices in the eigenvalue-eigenvector problem by eliminating elements corresponding to nodes at which no forces are
applied. Since then, this technique has been widely used in linear and nonlinear dynamic response analyses [47,48], and con-
tact problems [49]. Recently, Bao et al. [22] applied the reduction technique to the simulation of a single fracture propagation
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driven by fluid pressure using finite element method without considering natural fractures. Therefore, in this study, a fully
coupled hydraulic fracturing model combined with a reduction technique, which takes advantage of the fact that the fracture
widths directly and exclusively depend on the degrees of freedom of enriched nodes, is proposed. The proposed model has
two features: (1) the model incorporates key physical mechanisms during the development process of complex fracture net-
work, such as interaction of hydraulic fractures and natural fractures, stress shadow effect, fluid flow within fracture net-
work, contact conditions of fractures, and (2) the model is able to simulate the complicated physical process with high
computational efficiency.

The rest of the paper is organized as follows. The mathematical description of the problem and the governing equations
are given in Section 2. The reduction technique applied to both the fluid-solid coupling iteration and contact iteration is
detailed in Section 3. Then, the proposed approach is verified and illustrated in Section 4. At last, conclusions are made in
Section 5.

2. Problem formulation

Consider a two-dimensional domain X containing a hydraulically driven fracture CHF filled with high-pressure incom-
pressible fluid injected at a constant rate of Qinj, as illustrated in Fig. 1. The domain also contains a pre-existing frictional
natural fracture CFF whose faces may undergo frictional slip in some cases as the hydraulic fracture (or named as hydro-
fracture) CHF approaches to it. The boundary of the domain is C and the unit outwards normal vector of C is represented
by nC. The prescribed tractions t and the displacements �u are imposed on the boundary Ct and Cu, respectively. The two
faces of fractures are expressed by the positive ‘‘+” and the negative ‘‘�” signs. The unit outwards normal vectors of the neg-
ative faces of the hydro-fracture CHF and the frictional fracture CFF are donated by nCHF and nCFF , respectively. We define a
one-dimensional curvilinear coordinate system (donated by s) along the hydro-fracture, and the origin of the coordinate sys-
tem is positioned at the injection point.

Some assumptions are made in this paper. We assume that the fluid can be typically modeled as a Newtonian fluid, the
propagation of the fracture is a quasi-static process, and there is no fluid lag between the fracture tip and the fluid front. The
fluid leak-off into the surrounding rock formation is neglected for simplicity since it is not the critical point in the present
study. In addition, the rock formation is considered as brittle material.

2.1. Deformation and fracture propagation criterion

The strong form of the equilibrium equation of the domain in the absence of body forces can be expressed as [26]
r � r ¼ 0 in X ð1Þ

where r is the Cauchy stress tensor, and r� is the divergence operator. The boundary conditions can be expressed as
Fig. 1. Illustration of a domain containing a hydro-fracture filled with high-pressure fluid and a fictional natural fracture.
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u ¼ �u on Cu

r � n ¼ t on Ct

r � nCHF ¼ pnCHF on CHF

r � nCFF ¼ tcont on CFF

8>>><
>>>:

ð2Þ
where p represents the fluid pressure, tcont is the contact traction vector acting on the faces of frictional fracture CFF.
Linear elastic constitutive is applied to describe the behavior of the formation, that is
r ¼ D : e ð3Þ

in which D is the elasticity matrix, e is the strain tensor associated with displacement u. Under the assumption of small
deformation, e can be determined from
e ¼ 1
2

ruþ ðruÞT
� �

ð4Þ
The maximum hoop tensile stress criterion [50] is used to determine when and how the fracture propagates. This crite-
rion assumes that the propagation direction is along a direction normal to the maximum hoop tensile stress, and when the
equivalent stress intensity factor Ke is greater than or equal to the fracture toughness of the rock formation, KIC, the fracture
will propagate. In this paper, the domain forms of the interaction integral method [51] are used to determine the stress
intensity factors KI and KII. The equivalent stress intensity factor Ke is calculated as [50]
Ke ¼ cos
a
2

K I cos2
a
2
� 3K II

2
sina

� �
ð5Þ
where a is the fracture propagation angle in the local fracture tip coordinate system and can be determined by
a ¼ 2arctan
�2K II=K I

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8ðK II=K IÞ2

q
0
B@

1
CA ð6Þ
2.2. Fluid flow

The one-dimensional flow of fluid in the hydro-fracture must satisfy the mass conservation equation. For any point s
along the hydro-fracture, this equation can be expressed as [44]
@w
@t

þ @q
@s

¼ 0 ð7Þ
where w represents the width of the hydro-fracture; q is the fluid flux. Under the lubrication theory, fluid flux within the
hydro-fracture can be given according to Poiseuille’s law [52]
q ¼ � w3

12l
@p
@s

ð8Þ
where l represents the viscosity of the fluid. Substituting Eq. (8) into Eq. (7) leads to the following equation [22]
@w
@t

� @

@s
k
@p
@s

� �
¼ 0 ð9Þ
where k can be considered as the permeability of the hydro-fracture and
k ¼ w3

12l
ð10Þ
For a hydro-fracture, Eq. (9) can be solved with the following initial and boundary conditions
wðs;0Þ ¼ 0
wðstip; tÞ ¼ 0
qð0; tÞ ¼ Q inj

qðstip; tÞ ¼ 0

8>>><
>>>:

ð11Þ
as well as the global mass conservation equation
Z stip

0
wds ¼

Z t

0
Q inj dt ð12Þ
where stip represents the location of the hydro-fracture tip and Qinj represents the injection rate of fluid at the injection point.
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For a T-shaped fluid-driven fracture formed after the intersection of a hydraulic fracture and a natural fracture, as shown
in Fig. 2, the same fluid pressure should be imposed at the junction for all branches. In addition, the balance of flux into and
out of the junction should also be imposed due to the law of conservation of mass [8,12]. In this paper, the continuity of pres-
sure and mass balance at the junction can be automatically satisfied in the proposed coupling method by sharing a common
fluid node, as will be shown later in Section 2.4.

2.3. Weak form of governing equations

By introducing the trial function u(x, t) and test function du (x, t) for the displacement field, the weak form of equilibrium
equation can be written as
Z

X
de : rdXþ

Z
CHF

½½du�� � pnCHF dCþ
Z
CFF

½½du�� � tcont dC ¼
Z
Ct

du � tdC ð13Þ
where the symbol ½½��� ¼ �þ � �� represents the difference of the variable ‘‘⁄” between face ‘‘+” and face ‘‘�” of fractures.
Therefore, [[u]] stands for the displacement jump across the faces of fractures.

By introducing test function dp (s, t) and integrating by parts, the weak form of the fluid flow equation (Eq. (9)) can be
given as
Z

CHF

dp
@w
@t

þ @ðdpÞ
@s

k
@p
@s

� �
dCþ dpjs¼0Q inj ¼ 0 ð14Þ
Notice that since the permeability k is related to the width of the hydro-fracture with a cubic relationship, as given in Eq.
(10), the coupled equilibrium and fluid flow equations are highly nonlinear. In the current study, this nonlinear coupled sys-
tem is solved simultaneously through the Newton-Raphson iterative method, as will be shown in detail in Section 3.1.

2.4. Discretization of governing equations

To discrete the equilibrium equation, the XFEM is employed to approximate the displacement field u. For the hydraulic
fracturing problem, the displacement u for any point x in the domain X can be approximated by adding three types of
enrichment shape functions as
uðxÞ ¼
X
I2Sall

Nu
I ðxÞuI þ

X
I2Sfrac

Nu
I ðxÞHðxÞaI

þ
X
I2Stip

Nu
I ðxÞ

X4
l¼1

FlðxÞbl
I þ

X
I2Sjunction

Nu
I ðxÞJðxÞcI

ð15Þ
where Sall is the set of all nodes in the mesh, Sfrac is the set of nodes whose support domains are cut into two parts by the
fracture, Stip is the set of nodes whose support domains are partially cut by the fracture, and Sjunction is the set of nodes whose
support domains are split into three parts by two intersecting fractures. Nu i is the standard finite element shape functions of
Fig. 2. Schematic of a T-shaped fluid-driven fracture formed after the intersection of a hydraulic fracture and a natural fracture.
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node I. uI is the standard nodal displacement vector. aI , b
l
I (l = 1,4) and cI are the nodal enriched DOF vectors. H(x), Fl(x) and J

(x) are the enrichment shape functions to account for the displacement jump across fracture surfaces, the singular displace-
ment field around the fracture tip and the displacement field around the intersection point of two fractures, respectively. H
(x) is usually taken as the signed Heaviside function [38]; Fl(x) for tip enrichment in brittle materials takes the general form
Flðr; hÞf g4l¼1 ¼ ffiffiffi
r

p
sin

h
2
;
ffiffiffi
r

p
cos

h
2
;
ffiffiffi
r

p
sin h sin

h
2
;
ffiffiffi
r

p
sin h cos

h
2

� �
ð16Þ
where (r, h) defines the polar coordinate system with the origin at the fracture tip; J(x) is the junction enrichment function
[26]. Typically, for a T-shaped junction, J equals 1, �1 or 0 on different subdomains created by the intersected fractures.
Details of the above enrichment functions can be found in the cited papers [26,37,40]. A schematic view of a typical enrich-
ment strategy of two intersecting fractures is illustrated in Fig. 3.

To approximate the one-dimensional pressure field p(s, t) inside a hydro-fracture, the fracture interface CHF is discretized
into fluid elements using linear shape functions. The nodes of the fluid elements are regularly arranged at the intersections of
hydro-fractures and edges of solid elements, as well as the fracture tips, as illustrated in Fig. 3. Additionally, a common fluid
node is imposed at the intersection point of two hydro-fractures and shared by all fracture branches to satisfy the continuity
of pressure and the balance of mass at the intersection point. The finite element approximation of the pressure field can be
expressed as
pðsÞ ¼
X
I2Shf

Np
I ðsÞpI ð17Þ
where Shf is the set of nodes of the fluid elements defined along the hydraulic fracture; Np
I ðsÞ represents the linear shape func-

tion of nodal pressure pI for node I, and it is defined in the natural local coordinate system n, namely
Np
1ðnÞ ¼ ðn� 1Þ=2

Np
2ðnÞ ¼ ðnþ 1Þ=2

(
ð18Þ
The fracture opening displacement vector w can be approximated by
w ¼
X
I2Sw

Nw
I uI � NwU ð19Þ
where Sw represents the set of nodes of elements that contain the fluid nodes; Nw is the shape function matrix which trans-
fers the nodal displacement to fracture opening; U is the global nodal displacement vector which contains both the standard
DOFs and enriched DOFs.

By substituting the displacement and pressure approximations (Eqs. (15), (17) and (19)) and the linear elastic constitutive
equation (Eq. (3)) into the weak form of the equilibrium equation (Eq. (13)) and the fluid flow equation (Eq. (14)), it is
straight-forward to obtain the discretized system of the nonlinear coupled equilibrium and flow continuity equations as
KU� QP� Fext ¼ 0 ð20Þ

Q T _UþHPþ S ¼ 0 ð21Þ

In Eq. (20), K is the global stiffness matrix; the coupling matrix Q that transfers fluid pressure vector P into equivalent

nodal forces, and the external loading vector Fext are defined as
Q ¼
Z
CHF

ðNwÞTnCHFN
p dC ð22Þ

Fext ¼
Z
Ct

Nuð ÞTtdC ð23Þ
In Eq. (21), the flow matrix H and the source term S are defined as
H ¼
Z
CHF

k
@Np

@s

� �T
@Np

@s
ds ð24Þ

S ¼ NpðsÞT js¼0Q inj ð25Þ

Taking time integration of Eq. (21) over a time step, we can obtain
Z tnþ1

tn

Q T _UþHPþ S
� �

dt ¼ 0 ð26Þ
where n represents the time step number. Implicit backward Euler time discretization is used in this paper, so according to
Eq. (26), we have



Fig. 3. Schematic of enriched nodes and fluid nodes of two intersecting hydro-fractures (T-shaped junction).
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Q TðUnþ1 � UnÞ þ DtHPnþ1 þ DtS ¼ 0 ð27Þ

where Un+1, Pn+1 are the unknown displacement field and fluid pressure at the (n + 1)th time step, respectively; Un is the
already known displacement field at the previous time step; Dt is the time increment between two adjacent time steps.
In addition, after the time discretization, Eq. (20) can be rewritten as follows in every time step
Knþ1Unþ1 � QPnþ1 � Fext ¼ 0 ð28Þ

Therefore, Un+1, Pn+1 can be calculated by solving the coupled Eqs. (27) and (28).

3. The reduction technique

Before continuing, it is necessary to recapitulate the general numerical solution procedure for a typical hydraulic fractur-
ing problem in consideration of the frictional fractures. As mentioned in the introduction, there are two types of iterations to
be performed during each time step: the iteration to check and determine the contact status of fractures (i.e., the contact
iteration), and the iteration to solve the coupling between fluid flow and deformation of fractures (i.e., the FSC iteration).
In the present work, the contact iteration is performed using the Newton-Raphson iteration method and the FSC iteration
is performed using a stabilized Newton-Raphson procedure (see Appendix A for details). At the beginning of each time step,
Eq. (28) is iteratively solved to determine the contact status of fractures with a pressure distribution P which is given as an
initial condition or obtained from the previous time step. Once the contact iteration converges, an FSC iteration step starts to
solve the coupled Eqs. (27) and (28) for U and P with an updated contact traction vector and the associated contact stiffness
matrix. Then, after the FSC iteration step, the contact solution is renewed by performing the contact iteration, which is fol-
lowed by another FSC iteration step. This process continues until the FSC iteration convergence criterion is reached. It is
important to mention that for the cases where the fractures intervals are wide or the fracture interactions are weak, the con-
tact iterations need only to be performed during the first few FSC iteration steps. This will be shown in detail in Sections 4.3
and 4.4.

From the solution procedure discussed above, it can be observed that the computational cost appears to be a key problem
because, usually, multiple iterations are required to obtain satisfactory convergence. Meanwhile, each iteration step means a
costly solving of a large-scale linear equation system. In this section, the reduction technique is proposed as an efficient tool
to reduce the total calculation time within the framework of XFEM. According to the formulation of XFEM, the displacement
vector U can be conveniently divided into two parts: one part is Us, which contains all the standard DOFs and has no con-
tribution to the calculation of fracture widths; the other part Ue contains all the enriched DOFs from which the fracture
widths can be directly derived [23]. Similarly, the global stiffness matrix K can be divided into four parts as follows
K ¼
R
X ðBstdÞTDBstddX

R
X ðBstdÞTDBenrdXR

X ðBenrÞTDBstddX
R
X ðBenrÞTDBenrdXþ RCFF

ðNwÞTDcontNwdC

2
4

3
5

� Kss Kse

Kes Kee þ Kcont
ee

	 

¼ Kss Kse

Kes
~Kee

	 
 ð29Þ
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where Dcont is the contact tangent operator of the contact problem within the framework of plasticity theory of frictional
[26,53] and is defined as
Dcont ¼ kN nCFF � nCFF

� �þ kT mCFF �mCFF

� �
for stick

kN nCFF � nCFF

� �þ lf kT mCFF � nCFF

� �
for slip

(
ð30Þ
where kN and kT are the penalty parameters in the normal and tangential directions, respectively; lf is the Coulomb friction
coefficient, and mCFF is the unit vector in the tangential direction of the frictional fracture.

After the decomposition of U and K along with the decomposition of the external force vector Fext into Fext s and Fext e,
Eq. (28) can be rewritten as
Kss Kse 0
Kes

~Kee �Q e

	 
 Us

Ue

P

0
B@

1
CA� Fext

s

Fext
e

 !
¼ 0 ð31Þ
in which Qe is a sub-matrix extracted from matrix Q by deleting terms related to standard DOFs. The subscripts n in Eq. (28),
which represent the time step, are omitted for brevity’s sake. It is obvious that Fext e is zero vectors since there are no exter-
nal forces acting on the enriched DOFs. Thus, Eq. (31) can be further written as
Kss Kse 0
Kes

~Kee �Q e

	 
 Us

Ue

P

0
B@

1
CA� Fext

s

0

 !
¼ 0 ð32Þ
Then Eq. (32) can be equivalently expressed as two equations
KssUs þ KseUe � Fext
s ¼ 0 ð33Þ

KesUs þ ~KeeUe � Q eP ¼ 0 ð34Þ

Substituting the rearranged Eq. (33) in which Us is explicitly expressed into Eq. (34) yields the following equation
~Kee � KesK
�1
ss Kse

� �
Ue þ KesK

�1
ss F

ext
s � Q eP ¼ 0 ð35Þ
So far, with the above reduction operation, the original discretized equilibrium equation (Eq. (28)) has been replaced with
the dimension-reduced equation (Eq. (35)).

3.1. Application to fluid-solid coupling iteration

To make the presentation clear, we start with the Newton-Raphson procedure for the fluid-solid coupling problem with-
out applying the reduction technique. For coupled Eqs. (27) and (28), the residual vector Ri of the Newton-Raphson method
at the iteration step i can be expressed as
Ri ¼ 0 0
�Q T 0
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ð36Þ
and the Jacobian matrix of the residual Ri can be written as
Ji ¼ K �Q
�Q T �DtHi

	 

ð37Þ
Then the displacement U and fluid pressure P can be updated according to
U
P

� �iþ1

¼ U
P

� �i

� Ri

Ji
ð38Þ
For the reduced coupled Eqs. (27) and (35), the residual vector Ri
R (the subscript R stands for ‘‘Reduce”, similarly here-

inafter) of the Newton-Raphson method at the iteration step i can be expressed as
Ri
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The Jacobian matrix of the residual Ri
R can be written as
JiR ¼
~Kee � KesK

�1
ss Kse �Q e

�Q T
e �DtHi

" #
ð40Þ
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Then the displacement Ue related to the enriched DOFs and fluid pressure P can be updated by
Ue

P

� �iþ1

¼ Ue

P

� �i

� Ri
R

JiR
ð41Þ
The iteration converges when fracture width w and fluid pressure P both come to a steady state, i.e., when the following
two criteria are satisfied simultaneously
gp ¼ Piþ1 � Pi



 


= Pi




 


 6 eptol
gw ¼ wiþ1 �wi



 

= wi


 

 6 ewtol

8<
: ð42Þ
where kk represents the L2-norm operator; ewtol and e
p
tol are the specified tolerances and are both taken as 10�4 in this paper.

It should be noted that when trying to calculate Ri
R and JiR in Eqs. (39) and (40), the inverse matrix, K�1

ss , which is, in gen-
eral, a dense matrix rather than a sparse matrix should be obtained first, and this procedure requires a relatively high com-
putational cost. Fortunately, the matrix inversion of Kss needs to be performed only once at the beginning of the analysis, as
Kss remains unchanged throughout the analysis. Once the Newton-Raphson iteration converges, Us can then be easily
obtained according to Eq. (33) as K�1

ss is already known. In general, the number of the enriched DOFs is quite less than
the number of the standard DOFs for a hydraulic fracturing simulation. Therefore, the computational cost can be dramati-
cally reduced by using the reduction technique. Moreover, in the case of the reduced equilibrium equation, the structural
complexity remains the same because all elements of the original stiffness matrix contribute. Hence, theoretically speaking,
the proposed reduction technique has no effect on iteration performance and simulation results as will be shown in
Section 4.

3.2. Application to contact iteration

In general, there are two types of natural fractures in the formation: cemented fractures [54] and frictional fractures.
Unlike the cemented fractures, the contact status of each frictional natural fracture must be determined. For a typical contact
problem, a variety of techniques can be used to incorporate the contact constraints into the weak form of XFEM equilibrium
equation, among which the most frequently used are the penalty method [26,53,55], the augmented-Lagrange multipliers
method [56] and the Lagrange multipliers method [57]. Since it introduces no additional variables, the penalty method is
widely used. Consequently, the penalty method in the framework of frictional plasticity theory [26,53] is used to illustrate
the reduction technique in this paper. Yet, it is worth stating that the proposed reduction technique is independent of the
contact algorithm.

When considering the frictional interaction between fracture surfaces, the discretized reduced equilibrium equation (Eq.
(35)) is not linear because ~Kee consists of a contact stiffness matrix Kcont

ee that incorporates the unknown contact condition
related to displacement U into the XFEM formulation, as given in Eq. (29). Therefore, Eq. (35) should be iteratively solved
to predict the stick/slip condition along fractures. The predictor-corrector algorithm similar to the elastic-predictor/plas
tic-corrector algorithm in the classical plastic theory [58] is adopted to obtain the contact tractions and update the penalty
parameters for the frictional contact problem. The detailed description of the Kuhn-Tucker rules expressing contact condi-
tions, the Coulomb’s friction law for the description of frictional contact behavior, as well as the predictor-corrector algo-
rithm can be found in the cited papers [26,53], and will not be repeated here as they are not the main concern of the
present work.

For the reduced equilibrium equation (Eq. (35)), the residual vector R̂î
R of the Newton-Raphson method at the contact iter-

ation step î can be written as
R̂î
R ¼ ~Kî

ee � KesK
�1
ss Kse

� �
Uî

e � Q ePþ KesK
�1
ss F

ext
s ð43Þ
and the associated Jacobian matrix can be written as
ĴiR ¼ ~Kî
ee � KesK

�1
ss Kse ð44Þ
Thus Ue can be updated at each iteration by
Uîþ1
e ¼ Uî

e �
R̂î

R

ĴiR
ð45Þ
The contact iteration converges when the residual vector R̂i
R is small enough in comparison with the initial residual vector

R̂0
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gc ¼ R̂i
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 6 ectol ð46Þ
where the tolerance ectol is taken as 10�10 in this paper.
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4. Numerical examples

In order to verify the accuracy and demonstrate the performance of the proposed approach, four numerical examples are
presented in this section. For these simulations, one-dimensional Gauss integration scheme with two integration points [57]
is used to perform the numerical integration over both the fluid elements and the contact faces along fracture segments. In
addition, a dynamic time step Dt [22] is used to ensure the mass conservation equation (Eq. (20)). The in-house program
(http://phipsi.top) used in this paper is written in FORTRAN 90. A numerical library called LAPACK [59] has been integrated
into the program to solve the linear systems of equations. Additionally, a backtracking algorithm is introduced to improve
the robustness of the Newton-Raphson method for the FSC iteration (details of the stabilized Newton-Raphson method can
be found in Appendix A). All simulations are performed on a computer with Intel i7-4790K 4 GHz processor and 16 GB DDR3
memory.
4.1. Verification of reduction technique for fluid-solid coupling iteration

As a starting point, we verify the reduction technique for the fluid-solid coupling iteration without considering contact by
comparing the numerical results with analytical solutions [60]. The analytical solutions have different expressions depend-
ing on the dimensionless fracture toughness Km of the KGD model [61] which can be written as
Km ¼ 4
2
p

� �1=2 K ICð1� m2Þ
E

E
12lQ injð1� m2Þ
	 
1=4

ð47Þ
where E and m are the elastic modulus and the Poisson’s ratio of the rock formation, respectively. The fracture propagation
regime is viscosity-dominated when Km < 1 and toughness-dominated when Km > 4. Since the fluid pressure along the hydro-
fracture is nearly constant, treatments in the toughness-dominated regime, such as slickwater fracturing, are relatively easy
to be modeled and convergence can be achieved in a few iterations at each time step without consuming too much CPU time
[22]. In addition, the viscosity-dominated regime is much more common for industrial hydraulic fracturing [62]. Therefore,
treatments in the toughness-dominated regime are not discussed in this paper. Nevertheless, it should be noted that the
reduction technique is also applicable to toughness-dominated cases without any additional consideration.

In this verification, the hydro-fracture is positioned at the center of a symmetrical model which has dimensions of 100 m
and 180 m in x and y directions, respectively, as shown in Fig. 4. The left edge of the model is fixed in x direction and the
bottom-left corner is fixed in both x and y directions. The material properties and fracturing parameters are listed in Table 1.
The fracture propagation regime is viscosity-dominated as Km is equal to 0.0313 and is much smaller than 1. The finite ele-
ment mesh of the model which contains 3080 four-node quadrilateral elements is also shown in Fig. 4. The size of elements
around the hydro-fracture is 0.5 m � 0.5 m.
Fig. 4. Geometry and finite element mesh of symmetrical hydraulic fracture propagation model.

http://phipsi.top


Table 1
Material properties and fracturing parameters.

Parameter Units Value

Elastic modulus E GPa 20
Poisson’s ratio m – 0.2
Fracture toughness KIC MPa m1/2 0.1
Injection rate Qinj m2/s 0.001
Viscosity l Pa s 0.1
Dimensionless toughness Km – 0.0313
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The initial half-length of the hydro-fracture is 1.25 m. A uniform pressure of 3.9 MPa, which is the theoretical fluid pres-
sure at the injection point, is taken as the initial guess for the first time step of the Newton-Raphson iteration. For the sub-
sequent time steps, the pressure solution obtained from the previous step is chosen as the first estimate. The simulation
continues until the injection time reaches 30 s. The variations of fluid pressure at the injection point and the fracture width
profiles at 30 s are shown in Figs. 5 and 6, respectively, together with the corresponding analytical solutions for comparison.
Excellent agreement between the numerical results and analytical solutions can be found, indicating that the proposed
approaches with and without the reduction technique are both able to predict satisfactory results. In addition, the complete
overlap of numerical results with and without the reduction technique shows that the reduction technique has no effect on
simulation results, as mentioned at the end of Section 3.1.

To illustrate the performance of the reduction technique, the acceleration ratio is defined as the ratio of the total CPU
times consumed by the simulation without the reduction technique to that with the reduction technique. The evolution
of CPU times and corresponding acceleration ratio are shown in Fig. 7, in which the acceleration ratio gradually increases
from 0.9 to 5.2, indicating a remarkable reduction of computational cost when the reduction technique is applied. Indeed,
this significant improvement is attributed to the remarkable decrease of the dimensions of linear systems to be solved at
each time step, with values ranging from 6370 to 6460, and from 43 to 133, for schemes without and with the reduction
technique, respectively. What calls for special attention is that the minimum value of the acceleration ratio, which is equal
to 0.9 and less than 1, occurs at the first time step where a relatively time-consuming inverse operation of Kss needs to be
performed. Furthermore, another fact should be pointed out about the acceleration ratio. The total consumed CPU time con-
sists of two main components: component (1) time required to solve the linear systems of equations; and component (2)
time required by other numerical operations such as determination of enriched nodes, assembly of matrices, calculation
of stress intensity factors, data transfer, preparation of data for post-process analyses, and so on. However, the computational
cost incurred by solving systems of linear algebraic equations is, in general, the dominated cost for a typical FEM-based anal-
ysis [34], and rapidly overwhelms other computational phases when the scale of analysis is increased. Thus, for reasons that
have been given above and will be clarified in the following, it is of great importance to adopt the reduction technique in an
XFEM-based hydraulic fracturing simulation.

The number of Newton-Raphson iterations required to solve the coupling equations with the convergence tolerance of
10�4 is shown in Fig. 8, from which we can see that, as expected, the reduction technique has no effect on the number of
Fig. 5. Comparison of fluid pressures at the injection point from XFEM and analytical solution at various instants.



Fig. 6. Comparison of fracture widths from XFEM and analytical solution when injection time reaches 30 s.

Fig. 7. Consumed CPU times and acceleration ratio at different injection times of verification example of hydraulic fracturing.
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iterations. Finally, Fig. 9 demonstrates the performance of convergence at the last time step, and a similar conclusion can be
drawn due to the overlap of the convergence curves.
4.2. Verification of reduction technique for contact iteration

In this section, the reduction technique for the contact problem is evaluated through a uniaxial compression simulation of
a plane strain block, which centrally contains an oblique frictional fracture at the angle of 50 degrees relative to the horizon-
tal direction. The block has dimensions of 35 m � 50 m, as shown in Fig. 10. The length of the fracture is 10 m. The load ry

applied on the top edge of the block is 5 MPa. The friction coefficient lf of the fracture surface is 0.3. The Young’s modulus E
and the Poisson’s ratio t of the block are 20 GPa and 0.2, respectively. It should be noted that the accuracy of imposing con-
tact constraints in the normal direction depends on the magnitude of penalty parameter kN; larger penalty parameter leads
to more accurate contact constraints. However, a large penalty parameter will result in an ill-conditioned stiffness matrix
and retard the convergence of the iteration. On the other hand, the oscillations in the contact stress fields [63] will intensify
as the penalty parameters increase. Hence, some balance must be sought. Therefore, in this paper, both the normal and tan-
gential penalty parameters, kN and kT are taken as 104 GPa/m [63,64] through trial and numerical experimentation.



Fig. 8. Number of Newton-Raphson iterations required at different injection time instants.

Fig. 9. Convergence curves of nonlinear fluid-solid coupling iterations with and without reduction at the last time step.
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The convergence profiles are shown in Fig. 11 fromwhich we can see that the convergence curve of the proposed iteration
scheme with reduction technique coincides exactly with that without reduction. For both schemes, the iteration converges
after 13 iteration steps when gc equals 6.4e�11. The maximum principal stress contours obtained from the XFEM solutions
after convergence are plotted in Fig. 12(a and b). In addition, the FEM solution of a model with 6806 elements is presented in
Fig. 12(c). In this paper, the positive value of stress indicates tension. It can be seen that the stress distributions for all three
cases are almost identical. In order to make a more detailed comparison, the curves of relative sliding (shear displacement)
between fracture surfaces along the fracture are plotted in Fig. 13. Good agreements can be observed between the three dif-
ferent numerical schemes. This means that the reduction technique is applicable to the contact iteration in the context of the
XFEM. The comparison of the CPU times is given in Fig. 14. It is clearly seen that the reduction technique can greatly reduce
the CPU time as in the case of the fluid-solid coupling problem discussed in the previous section. Specifically, as the dimen-
sionality of the linear system to be solved at each iteration step substantially decreases from 4639 (i.e., the number of total
DOFs) to 120 (i.e., the number of enriched DOFs), the total CPU time is reduced by 67 percent from 51.4 s to 17.0 s with an
acceleration ratio of 3.0. Therefore, we can conclude that the iteration scheme with reduction technique has noticeable accel-
eration performance without affecting the results, or weakening the robustness and convergence, in comparison with the
standard iteration scheme.



Fig. 10. Finite element model of a plane strain block loaded in compression with a fracture at the angle of 50 degrees relative to the horizontal direction.
The model is composed of 2280 standard finite element nodes, 28 Heaviside enriched nodes marked with blue circles and 8 fracture-tip enriched nodes
marked with magenta squares. The number of total free DOFs and enriched DOFs equal 4639 and 120, respectively. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Convergence curves of contact iterations with and without reduction.
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Fig. 12. Contours of maximum principal stress corresponding to (a) XFEM solution with reduction technique, (b) XFEM solution without reduction
technique, and (c) FEM solution.

Fig. 13. Comparison of relative sliding (shear displacement) between fracture surfaces.
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4.3. Verification of reduction technique for the case where both iterations exist

In this section, we continue to check if the reduction technique has an effect on the results for the case where both the
fluid-solid coupling iteration and the contact iteration exist through an example shown in Fig. 15. Additionally, we will also
check the treatment method of the conditions of pressure continuity and mass balance at intersection points of hydraulic
fractures through this example. The model is assumed to be symmetrical about the central plane and only the right-hand
side is considered. Frictional coefficient lf of these pre-existing fractures is 0.3. The initial hydro-fracture is positioned on
the left edge of the model. The remote in-situ stresses in x and y directions, rH and rh, are 5 MPa and 4 MPa, respectively.
Material properties of the formation and the fracturing parameters are the same as in Table 1. There are a large number of
studies reported on the interaction between the hydro-fracture and natural fracture [7,8,12,13,65–68]. In this and the next
example, an extended Renshaw and Pollard criterion [69] based on the linear elastic fracture mechanics solution for the
stresses is adopted to predict whether a hydro-fracture will propagate across or arrested by the frictional fracture [13,68].

Before performing the simulation, it is still necessary to make some assumptions to achieve a robust numerical model. If
the hydro-fracture is arrested by the frictional pre-existing fracture, a T-shaped fracture appears at the intersection point and
the fluid is assumed to invade directly into two fracture branches. Then, the hydro-fracture diverts into the pre-existing frac-



Fig. 14. Comparison of CPU times consumed by XFEM contact iterations with and without reduction technique.

Fig. 15. Illustration of the fracture geometries where the solid line represents pre-existing frictional fracture. The boxed region (20 m � 20 m) is meshed
into 1600 elements of size 0.5 m � 0.5 m, and the rest region of the model is meshed into 1312 elements.
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ture and propagates along it until reaches the tip of the pre-existing fracture. In other words, growth of the hydraulic fracture
in the direction away from the pre-existing fracture is prevented. It is also assumed in this study that after the fluid flows
into the frictional fracture, if some part of the frictional fracture is found to be closed (width is less than 0.01 mm), then the
fluid nodes will be removed from the closed part.

It is well known that the Newton-Raphson iteration converges to the exact solution rapidly in the first few iteration steps
if the initial guess is properly selected [70]. This feature of the Newton-Raphson can also be observed in the convergence
curves of the FSC iteration shown in Fig. 9 in which gw and gp drop to quite small values, 0.01 and 0.04, respectively, after
only two FSC iterations. Therefore, in order to further reduce the calculation amount, we also run the simulation by only per-
forming the contact iteration during the first three FSC iterations within each time step. Then, the contact solution is kept
fixed because the slightly changing fluid pressure in the next FSC iterations will not abruptly change the contact solution
until the next time step when the fracture network evolves. Finally, it should be noted that the linear elastic fracture
mechanics assumption leads to negative net pressure near the fracture tip. Therefore, in this and the next section, the zero
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net pressure boundary condition [71,72] is applied at the tip of the hydro-fracture since the length of the zone with negative
net pressure is negligible compared to the fracture length.

The fracture opening distributions at different time instants (t1 = 28.6 s, t2 = 79.1 s, and t3 = 146.1 s) are shown in Fig. 16,
in which the fracture segments surrounded by the pink boxes are close and in contact. Fig. 16(a) depicts that the surfaces of
the pre-existing fracture are in contact. According to the extended Renshaw and Pollard criterion, the hydro-fracture will be
arrested, then the hydro-fracture diverts into the frictional fracture and propagates along it in both the upwards and down-
wards directions, as shown in Fig. 16(b). It can be observed that the surfaces of the top part of the frictional fracture are still
in contact under the action of in-situ stress. Afterwards, the propagation paths of the upper and the lower branches are dif-
ferent since the frictional fracture is not symmetrical about the horizontal axis of y = 50 m, as depicted in Fig. 16(c).

Furthermore, the distributions of the net fluid pressure inside the frictional fracture at t2 and t3 are given in Fig. 17, in
which the results obtained without using the reduction technique and the results obtained by performing the contact iter-
ation during only the first three FSC iterations within each time step are also shown. From this figure we observe that the
reduction technique has no effect on the simulation results for the case where both hydro-fracture and frictional fracture
exist. On the other hand, it can be observed that the treatment method of the contact iteration almost has no effect on
the simulation results, indicating that the slightly changing fluid pressure in the fourth and following FSC iterations is not
able to change the contact status.

The variations of flow rates with injection time at the intersection point of the hydro-fracture and the frictional fracture
are given in Fig. 18. It can be observed that the sum of Qup and Qdown exactly equals to Qin. Thus, it can be concluded that the
balance of flux into and out of the junction, i.e., Qin = Qup + Qdown, can be automatically satisfied all the time by sharing a com-
mon fluid node at the junction as schematically illustrated in Fig. 3, without invoking any other process [8,12] to determine
the flux distribution. Moreover, the pressure at the junction point is undoubtedly the same for all branches, because they
share the same fluid node.
4.4. Hydraulic fracture network propagation in a formation containing frictional fractures

In this example, we present a hydraulic fracturing simulation in a formation that contains some specified frictional frac-
tures to comprehensively evaluate the performance of the proposed approach. All parameters are the same as those in Sec-
tion 4.3 except the configurations of pre-existing fractures, as shown in Fig. 19. Five frictional fractures (denoted by FF for
simplicity, and marked as (1) to (5)) with the same length of 5 m. FFs (2), (3), (4), (5) are aligned at an angle of 75� with
respect to the negative x-direction, while FF (1) is positioned perpendicularly to the x-direction. The block is discretized into
5180 regular quadrilateral elements in total.

The simulation is performed by applying the reduction technique to both the fluid-solid coupling iteration and contact
iteration and proceeds until injection time t reaches 453.5 s. Figs. 20 and 21 show the contours of the maximum principal
stress of the whole model and fracture opening distributions within the fracturing zone (i.e., the green region shown in
Fig. 19), respectively, at different injection time instants (12.8 s, 137.7 s, 229.0 s and 453.5 s). Clearly, a tensile stress zone
around the tip of the initial hydro-fracture, induced by the fluid pressure, can be seen from the stress distribution displayed
in Fig. 20(a), in which the initial hydro-fracture propagates before reaching FF (1). In addition, the surfaces of frictional frac-
tures are prevented from interpenetrating when they come into contact. However, no significant stress change can be seen in
the vicinity of FFs (2) to (5) because no slip occurs along these fractures under the influence of the specific remote in-situ
stresses with a relatively small stress difference of 1 MPa. After the initial hydro-fracture intersects with FF (1), according
Fig. 16. Fracture opening distributions within the boxed zone shown in Fig. 15 at different injection time instants: (a) t1 = 28.6 s, (b) t2 = 79.1 s, (c)
t3 = 146.1 s. The blue bars perpendicular to the fracture segments are proportional in length to the widths of fractures. The fracture segments surrounded by
pink boxes are close and in contact. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)



Fig. 17. Net fluid pressure distributions in the vertical fracture shown in Fig. 15 at time instants t2 = 79.1 s and t3 = 146.1 s.

Fig. 18. Evolution of fluid fluxes at the intersection point of the initial hydro-fracture and fractional fracture. Qin donates the flow from the initial hydro-
fracture to the intersection point; Qup donates the upward flow from the intersection point to the upper half branch, and Qdown donates the downward
flow from the intersection point to the lower half branch.
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to the extended Renshaw and Pollard criterion no crossing occurs because the coefficient of friction lf and the ratio of the
remote in-situ stresses rH to rh are small [68]. Hence, the hydro-fracture propagates along both the upward and downward
sides of FF (1), which is presented as a potential flow channel, and keeps propagating until fluid fronts reach the tips of the
channel. Afterwards, the two tips of the hydro-fracture synchronously grow and turn to the direction perpendicular to the
minimum principal stress, resulting in symmetrical (about the horizontal axis of y = 50 m) distributions of propagation
paths, as well as stress and fracture opening, as shown in Figs. 20(b) and 21(b). Nonetheless, the symmetry of the propaga-
tion paths is broken soon after the oblique FFs (2) and (3) are intersected by the growing hydro-fractures, as can be seen in
Figs. 20(c) and 21(c). It is noticed that two branches emerge from both tips of FF (2), while only one from the lower tip of FF
(3) and the upper tip stops growing under the combined action of the far-field stresses and the natural-hydraulic fracture
interaction. It should be remarked that although FF (2) has two growing branches, the width of the lower one is quite narrow,
as can be clearly seen in Fig. 21(c). This evident reduction of fracture width is mainly the result of the stress shadow effect
[73], which in this case indicates that the increase of closure stress in its surrounding region induced by the adjacent hydro-
fractures above and below it makes it difficult to widen its opening. Thereafter, these three hydraulic fracture tips continue
to grow until the lowest one extended from FF (3) meets and intersects with FF (5), leading to a significant tensile stress zone
in the vicinity of the newly created intersection point, as shown in Fig. 20(d). It should be noted that the simulation is also
run by performing the contact iteration during every FSC iteration within each time step, and the obtained fracture opening



Fig. 19. Illustration of the fracture geometries where the solid lines represent pre-existing frictional fractures marked as (1) to (5). Coordinates of the
midpoints of fractures (1) to (5) are (5 m, 50 m), (15 m, 55.5 m), (15 m, 44.5 m), (25 m, 58.5 m) and (25 m, 41.5 m), respectively. The green region (the
fracturing zone) is meshed into 3600 elements of size 0.5 m � 0.5 m, and the rest region of the model is meshed into 1580 elements. The dotted-line box is
the boundary of a larger fracturing zone with the size of 40 m � 40 m which will be mentioned later in this section. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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distributions as well as the contact status are the same. Therefore, it can be concluded that the treating method of the contact
iteration performs well and is acceptable for the cases presented in this paper. However, it should also be pointed out that for
the extreme cases that involve more fractures, more complex fracture configurations, stronger fracture interactions, more
viscous fluid, or dynamic loading condition, the number of contact iterations performed during each time step must be prop-
erly chosen through trial and numerical experimentation.

The variations of flow rates with injection time at the intersection point (the junction) of FF (1) are given in Fig. 22. The
balance of flux into and out of the junction, i.e., Qin = Qup + Qdown, is satisfied all the time by sharing a common fluid node at
the junction. After the time instant around t = 140 s when FFs (2) and (3) are involved in the fracture network, Qdown and Qup

gradually increases and decreases, respectively, and this variation tendency is in accordance with the fracture opening dis-
tributions shown in Fig. 21(c and d), where Qdown related fractures have the wider opening than those related to Qup. Mean-
while, as the fracture network evolves, the flux into the junction, Qin, gradually approaches to the total injection rate Qinj, as
shown in Fig. 22.

In order to illustrate the performance of the reduction technique, the simulation is carried out for four times in total using
four different options of the reduction technique: option (1) reduction technique is applied to both FSC iteration and contact
iteration; option (2) applied only to FSC iteration; option (3) applied only to contact iteration, and option (4) no reduction
technique is applied. Just as expected, the simulation results, including stress distributions and fracture opening profiles, are
completely identical to each other. The consumed CPU times for the above four options and the corresponding acceleration
ratios are reported in Figs. 23 and 24, respectively, from which significant performance improvements can be seen. More
precisely, in Fig. 23, the final CPU times for options (1) to (4) are 30.7 min, 136.2 min, 96.5 min, and 268.9 min, respectively.
The decrease of CPU time from 268.9 min of option (4) to 30.7 min of option (1), with an acceleration ratio up to 8.76, reveals
a striking improvement in overall computation efficiency. This improvement is obviously attributed to the considerable
decrease of the sizes of linear systems achieved via the application of the reduction technique. Considering the FSC iteration
of the last time step for example, as many as 5723 nodes (including 5325 standard nodes, 398 enriched nodes and 293 fluid
nodes) are included in the calculation for option (4) and the size of the resulting linear system is 11,739 � 11,739. In contrast,
only 398 enriched nodes related to the calculation of fracturing widths as well as 293 fluid nodes are included for option (1),
leading to a linear system with size 1089 � 1089 which is considerably smaller than the original size. Nevertheless, the final
acceleration ratios for option (2) and option (3) are 1.96 and 2.84, respectively, which are not as significant as option (1),
suggesting that the reduction technique should be applied to both the FSC and contact iterations to achieve sufficient per-
formance improvement.



Fig. 20. Contours of the maximum principal stress of the whole model at different injection time instants: (a) t = 12.8 s, (b) t = 137.7 s, (c) t = 229.0 s and (d)
t = 453.5 s. The solid black lines represent propagation paths.
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Finally, in order to investigate the effect of the problem scale on the performance of the reduction technique, the simu-
lation is performed again with a larger fracturing zone of size 40 m � 40 m, as shown by the dotted-line box in Fig. 19. The
fracturing zone is meshed into 6400 elements of size 0.5 m � 0.5 m, and the rest region of the model contains 1696 elements.
Therefore, the number of standard DOFs is increased by 1.6 times from 10,650 to 16,554 compared to the original FEMmodel
in which the fracturing zone contains 3600 elements. The reduction technique is applied to both iterations. It is found that
the simulation results including stress distribution and fracture opening are identical to those obtained previously. More
importantly, the acceleration effect of the reduction technique becomes more remarkable as the problem scale increases,
as shown in Fig. 25. The maximum acceleration ratio is 16.27 and is much bigger than 8.76 of the original smaller model.
Therefore, it can be seen that, in general, the larger the problem scale is (usually means more FEM elements), the bigger
the acceleration ratio will be.

Compared to our proposed model, some simplifications have to be made in some other numerical methods to reduce the
computational cost when dealing with large-scale problems. For example, some key profiles (e.g., stress intensity factors and
fracture widths) are determined directly from the analytical solutions [5,13]. However, since the analytical solution is not
able to precisely account for the effects of natural fractures and stress shadow, which are critical for the simulation results
[74], the numerical accuracy may not be as good as the proposed method. Additionally, uniform fluid pressure along the
hydro-fracture is often assumed by researchers to reduce the computation time [14,29,30]. Apparently, this assumption
may lead to inaccurate simulation results. In conclusion, after applying the reduction technique, the XFEM-based numerical
models are competitive in terms of both computational cost and numerical accuracy.



Fig. 21. Fracture opening distributions within the fracturing zone shown in Fig. 19 at different injection time instants: (a) t = 12.8 s, (b) t = 137.7 s, (c)
t = 229.0 s and (d) t = 453.5 s.
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5. Conclusions

The motivation of this work is driven by the requirement to improve the computational efficiency in the modeling of
large-scale hydraulic fracturing processes where preexisting frictional fractures are considered. The contribution of the pre-
sent study lies in the application of the reduction technique to a tightly coupled numerical model to simulate hydraulic frac-
turing in fractured media within the framework of XFEM. Firstly, the model explicitly incorporates the effect of hydro-
fractures and natural fractures without requiring the mesh to conform to the fracture geometry. Hence, the challenge of high
computational cost induced by the complex meshing is overcome. Secondly, since the fracture widths directly and exclu-
sively depend on the DOFs of enriched nodes, the reduction technique can significantly reduce the sizes of the nonlinear sys-
tems by removing the standard DOFs, which have no contribution to fracture opening. After applying the reduction
technique to the fluid-solid coupling iteration and the contact iteration, an additional matrix inversion operation of the stiff-
ness matrix is required, but it needs to be performed for only one time right at the beginning of a simulation. In the proposed
model, the penalty method within the framework of plasticity theory of friction is used to model the nonlinear frictional con-
tact behavior between frictional fracture faces. The extended Renshaw and Pollard criterion is used to predict whether a



Fig. 22. Evolution of fluid fluxes at the intersection point of the initial hydro-fracture and FF (1). Qin = Qup + Qdown holds all the time.

Fig. 23. Consumed CPU times for different application options of the reduction technique at different injection times.
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hydro-fracture will propagate across a frictional fracture. The backtracking algorithm is introduced to stabilize the Newton-
Raphson iterative procedure which is used to solve the coupled equilibrium and flow continuity equations.

The performance of the established numerical model has been demonstrated through four examples. The first two illus-
trative examples indicate that the proposed model is accurate, and the reduction technique shows remarkable acceleration
effects during the processes of both the fluid-solid coupling iteration and the contact iteration without worsening the con-
vergence or losing the computational accuracy. In the third example, it is shown that the total computational cost can be
further reduced without decreasing the accuracy by only performing the contact iteration during the first three FSC itera-
tions within each time step. In addition, the third example also indicates that the mass balance at intersection points of frac-
tures can be automatically satisfied by sharing a common fluid node. This strategy is efficient as it invokes no other
procedures to determine the flux distribution at these intersection points. In the last example, the total computational cost
is dramatically reduced with an acceleration ratio up to 8.76. However, applying the reduction technique only to the fluid-
solid coupling iteration or only to the contact iteration results in much lower acceleration ratios of 1.96 and 2.84, respec-
tively. Consequently, it is strongly suggested that the reduction technique should be applied to both types of iterations to
achieve the maximum acceleration effect. In fact, the acceleration ratio is problem dependent and, more importantly, the
acceleration effect becomes more remarkable as the problem scale increases.

In conclusion, this study demonstrates that, with the aid of the reduction technique, the XFEM is capable of modeling
complex fracture network propagation with dramatically decreased computational cost. On the other hand, as the compli-
cated mechanisms of how hydro-fractures interact with natural fractures, how fluid flow interacts with elastic deformation



Fig. 24. Evolutions of acceleration ratios with different application options of the reduction technique at different injection times.

Fig. 25. Comparison of acceleration ratios of the original model and the model with more elements.
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of fractures, and how faces of frictional fracture interact with each other are all considered and correctly modeled, the pro-
posed method is able to achieve superior accuracy in comparison to some other numerical methods with various simplifi-
cations. The great advantages of XFEM, the high accuracy, as well as the computational efficiency make the proposed
numerical method an attractive tool for engineering design of hydraulic fracturing treatments. It is therefore strongly rec-
ommended to adopt the reduction technique in the XFEM-based hydraulic fracturing simulators.
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Appendix A

The Newton-Raphson algorithm is sensitive to the initial guess. If the initial guess is not sufficiently close to the solution,
the iterative process may diverge or oscillate between two solutions. This issue is especially remarkable for the Newton-
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Raphson procedure of solving the highly nonlinear fluid-solid coupling equations. In contrast, for the Newton-Raphson iter-
ation procedure of solving the contact problem, the zero initial guess of displacement field is generally feasible. In this sec-
tion, an improvement strategy called the backtracking algorithm [70] is introduced to stabilize the convergence process for
the Newton-Raphson iteration procedure of solving the highly nonlinear fluid-solid coupling system. For simplicity, let cnew

and cold represent Ue

P

� �~iþ1

and Ue

P

� �~i

, respectively. Thus, we can define the Newton step dc as follows
dc ¼ �RR

JR
ðA1Þ

cnew ¼ cold þ dc ðA2Þ

A reasonable approach to deciding whether to accept the Newton step dc or not is to request that the Newton step

decreases RRj j2 ¼ RT
RRR (the superscript is omitted for simplicity), or, in other words, minimizes the following objective

function
f ¼ 1
2
RT

RRR ðA3Þ
where 1
2 is for later convenience. Fortunately, it can be noticed that the Newton step is always the descent direction for f,

because
rfdc ¼ RT
RJR

� �
�RR

JR

� �
¼ �RT

RRR < 0 ðA4Þ
Therefore, the strategy is relatively simple: Try a full Newton step first, and if it increases f, then backtrack along the New-
ton direction until an acceptable step is obtained. As the Newton step is always the decent direction for f, it is guaranteed to
find an acceptable step.

A parameter k is defined to adjust the size of the Newton step
cnew ¼ cold þ kdc ð0 < k 6 1Þ ðA5Þ

The purpose is to find an acceptable k that makes f ðcnewÞ decrease sufficiently. The backtracking algorithm [70] can be

applied to determine k. A parameter a is used in the following equation to avoid a too slowly decreasing f
f ðcnewÞ 6 f ðcoldÞ þ arf � dc ð0 < a < 1Þ ðA6Þ

and a is suggested to be 10�4. The backtracking procedure can be implemented as follows.

Define
gðkÞ � f ðcold þ kdcÞ ðA7Þ

so that
g0ðkÞ ¼ rfdc ðA8Þ

Given a k, we can get g (k) and g0ðkÞ, therefore, for the first backtrack, g(0), g0ð0Þ, g(1) and g0ð1Þ are all available. So that g(k)

can be approximately written as a quadratic
gðkÞ 	 gð0Þ þ g0ð0Þkþ gð1Þ � gð0Þ � g0ð0Þ½ �k2 ðA9Þ

The above quadratic has a minimum when
k ¼ � g0ð0Þ
2 gð1Þ � gð0Þ � g0ð0Þ½ � ðA10Þ
We set kmin = 0.1 to avoid a too small k. Once we get k1 of the previous backtrack and k2 of the second most recent back-
track, then, for the second and subsequent backtracks, we can approximate g(k) as a cubic
gðkÞ 	 ak3 þ bk2 þ g0ð0Þkþ gð0Þ ðA11Þ

where the coefficients a and b can be calculated by
a

b

	 

¼ 1

k1 � k2

1=k21 �1=k22
�k2=k

2
1 k1=k

2
2

" #
gðk1Þ � g0ð0Þk1 � gð0Þ
gðk2Þ � g0ð0Þk2 � gð0Þ

	 

ðA12Þ
The minimum of the above cubic is at
k ¼ �bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 3ag0ð0Þ

q
3a

ðA13Þ
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It is enforced that k lies between kmax = 0.5k1 and kmin = 0.1k1.
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